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Alzheimer’s disease (AD) brain magnetic resonance imaging (MRI) biomarkers based
on larger-scale tissue neurodegeneration changes, such as atrophy, are currently
widely used. Texture analysis evaluates the statistical properties of the tissue image
quantitatively; therefore, it could detect smaller-scale changes of neurodegeneration.
Entorhinal cortex is the first region affected, and no study has investigated texture
analysis on this region before. This study aims to differentiate AD patients from Normal
Control (NC) and Mild Cognitive Impairment (MCI) subjects using entorhinal cortex
texture features. Furthermore, it was evaluated whether texture has association to
MCI beyond that of volume, to evaluate if atrophy development may precede. Texture
features were extracted from 194 NC, 200 MCI, 84 MCI who converted to AD
(MCIc), and 130 AD subjects. Receiving operating characteristic curves determined
the performance of the various features in discriminating the groups, and a predictive
model was used to predict conversion of MCIc subjects to AD. An area under the
curve (AUC) of 0.872, 0.710, 0.730, and 0.764 was seen between NC vs. AD, NC
vs. MCI, MCI vs. MCIc, and MCI vs. AD subjects, respectively. Including entorhinal
cortex volume improved the AUCs to 0.914, 0.740, 0.756, and 0.780, respectively.
For the disease prediction, binary logistic regression was applied on five randomly
selected test groups and achieved on average AUC’s of 0.760 and 0.764 on the training
and validation cohorts, respectively. Entorhinal cortex texture features were significantly
different between the four groups and in many cases provided better results compared
to other methods such as volumetry.

Keywords: Alzheimer’s disease, mild cognitive impairment, entorhinal cortex, magnetic resonance imaging,
texture

INTRODUCTION

Alzheimer’s disease (AD) represents the first disease in the top 10 disease leading cause of death in
the United States (US), and it cannot be prevented, slowed, or cured. It represents the most common
form of dementia, which affects memory, language, and other cognitive skills and eventually leads
to an inability of everyday activities. Despite continuous advances in exploring the nature of AD,
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according to the World Health Organization (WHO), there are 47
million patients worldwide, and by 2030, this number is projected
to increase to 75 million.

There are still many unresolved issues regarding the
pathophysiology of this highly heterogeneous disease in terms
of diagnosis and follow-up. In an attempt to understand better
the disease, studies have been examining the neuropathology
and cognitive impairment in animal models such as transgenic
mice (see Kitazawa et al., 2012; Saito et al., 2014 for a
review). However, it seems that AD is a uniquely human
disease. With no doubt, animal models offer the advantage of
in vivo testing, which in humans is available only post-mortem;
however, they lack main disease pathological features such as
neuronal loss or neurofibrillary tangle (NFT) development, which
is the neuropathological hallmark of AD (Drummond and
Wisniewski, 2017). The diagnosis of the disease still remains
probable and only post-mortem biopsy can confirm AD as
it reveals deposits of amyloid-β (Aβ) plaque deposition and
tau protein (NFTs) in the brain tissue (Braak and Braak,
1997a). However, due to brain inaccessibility, the diagnosis is
based on other factors such as medical and family history,
input from the family members regarding the behavior of
the subject, blood test, imaging, and cognitive tests. Cognitive
tests such as the Mini Mental State Examination (MMSE)
(Folstein et al., 1975) and the Clinical Dementia Rating (CDR)
(Morris, 1993) represent two of the most commonly used
tests in the assessment of AD, and they evaluate memory
and language abilities. However, an important limitation of
clinical and cognitive assessment is the diagnosis of probable
AD after structural changes have occurred within the brain
(Braak and Braak, 1991, 1996; Morris et al., 1996). Jack
et al. (2004) showed that brain atrophy on structural magnetic
resonance imaging (MRI) was detected more consistently than
decline on cognitive scores in patients with AD. Furthermore,
when cognitive assessment is not used in combination with
other biomarkers, the former suffers from low sensitivity
(Dukart et al., 2016).

Indeed, decades before the first clinical symptoms become
apparent, there is an inevitable progression of atrophy, which
initially affects the medial temporal lobe (MTL) (Scahill et al.,
2002; Petrella et al., 2003; Jack et al., 2004). MTL is highly
associated with memory, and as the neurons get affected,
cognitive and functional deficits start to appear. Post-mortem
studies (Braak and Braak, 1997b; Kordower et al., 2001) have
implicated entorhinal cortex as an early site of involvement
in AD followed by the hippocampus, the amygdala, and the
parahippocampal gyrus (Dickerson et al., 2001; Killiany et al.,
2002; Squire et al., 2004).

Mild cognitive impairment (MCI) represents the transitional
stage between normal aging and AD, and it cannot be easily
identified by cognitive tests. MCI subjects may have decreased
memory function beyond the normal level based on a given
person’s age and education; however, they do not fulfill the
criteria for dementia, as their cognitive function is comparable to
Normal Control (NC) subjects. Most of these subjects will remain
stable even after 10 years of follow-up (Mitchell and Shiri-Feshki,
2009), and only∼15% will progress to AD (Farias et al., 2009).

Therefore, due to cognitive assessment limitations especially
for MCI subjects, the research community has been actively
searching for diagnostic imaging biomarkers especially the ones
derived from quantitative T1-weighted MRI. The importance of
structural MRI in the assessment of AD was underlined by its
inclusion in the new diagnostic criteria (Dubois et al., 2007)
along with temporoparietal hypometabolism as seen in positron
emission tomography (PET) (Mosconi et al., 2008), positivity
on amyloid imaging as seen in PET (Johnson et al., 2013),
and abnormal neuronal cerebrospinal fluid (CSF) biomarkers
(tau and/or Aβ) (Brier et al., 2016; Bjerke and Engelborghs,
2018; Blennow and Zetterberg, 2018). However, PET studies
are not easily accessible, due to several factors such as cost,
radiopharmaceutical limitations (availability, targeting amyloid
or tau proteins), and exposure to ionizing radiation. On the
other hand, structural MRI has no ionizing radiation; thus, it is
preferable in longitudinal investigations, and it provides high-
resolution images. However, radiologists cannot perceive subtle
changes of neurodegeneration, especially in the early stages of the
disease by the naked eye observation. Even if they could, without
any quantitative measurements, it would be impossible to predict
the patient’s progress.

Therefore, research on quantitative MRI-derived biomarkers
of AD is an active research area, which can reveal the cerebral
atrophy and they are used as a biomarker in the assessment
of AD. In the literature, several MRI quantitative methods are
described for use in the assessment of AD. Such methods are:
(i) voxel-based morphometry (VBM), which describes global
changes or atrophy of the deep cerebral structures (ii) volume
analysis (iii) thickness analysis (iv) shape, and (v) texture analysis.
Volumetry remains the most popular technique to assess AD
especially in the area of MTL (Jack et al., 1999; Killiany et al.,
2000; Dickerson et al., 2001; Pennanen et al., 2004). Apart
from the MTL, other studies chose to assess the whole brain
(Misra et al., 2009; Plant et al., 2010), although the cortex is
affected in later stage (Braak and Braak, 1991). Multimethod
studies (Cuingnet et al., 2011; Wolz et al., 2011; Da et al., 2014)
combined biomarkers for a better understanding of the disease
pathophysiology and heterogeneity.

The accumulation of NFTs and Aβ plaques is present prior to
atrophy, and these plaques could affect image intensity structure
and distribution. Texture analysis statistical properties of the
image intensities might represent changes in MRI image pixel
intensity due to NFTs and Aβ plaques. Furthermore, MRI
biomarkers based on texture might be able to detect earlier stages
of AD than biomarkers that use larger-scale changes, such as
thickness or atrophy. The establishment of such biomarkers will
allow the identification of individuals with MCI at an earlier
stage. This might lead to a better management of the MCI
group targeting in slower progression or even prevention to
conversion to AD.

Although hippocampus represents the most established region
of interest (ROI) used in the assessment of AD, the earlier
involvement of the entorhinal cortex was proved by many
studies (Gómez-Isla et al., 1997; Juottonen et al., 1999; Galton
et al., 2001; Killiany et al., 2002; Busatto et al., 2003; deToledo-
Morrell et al., 2004; Tapiola et al., 2008). In two comprehensive

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2020 | Volume 12 | Article 176

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00176 October 19, 2020 Time: 16:26 # 3

Leandrou et al. Entorhinal Cortex Texture in AD

reviews (Zhou et al., 2016; Leandrou et al., 2018), the authors
concluded that structural changes in the early stages of the
disease are more pronounced in the entorhinal cortex. Table 1
tabulates studies that used entorhinal cortex in the assessment of
AD. Furthermore, for the disease prediction, entorhinal cortex
provided better predictive accuracies compared to hippocampus.
Although volumetry represents the most commonly used method
to date, there is lack of research in the assessment of AD using
texture analysis. The study of Sørensen et al. (2015), found that
hippocampal texture was superior to volume reduction for the
disease prediction. Therefore, we hypothesized that through the
earlier involvement of entorhinal cortex and by using texture, it
is likely to detect microscopic alterations of the disease before
atrophy spreads.

Since we wanted to evaluate the classification and prediction
value of MRI, other related to AD features such as CSF Tau,
Aβ biomarkers, or ApoE genotyping were not included in the
analysis, as they are not generally available in population samples.
However, age and gender as main risk factors for developing
AD were included.

To the best of our knowledge, this is the first study that used
texture analysis on the entorhinal cortex. The main objective
in this study was to determine whether MRI entorhinal cortex
texture features could detect early cognitive decline in MCI and
AD subjects. In addition, we compared entorhinal cortex results
to the gold standard method, hippocampal volume, to evaluate
which method could provide the best results. We emphasize here
that the goal of our research was to investigate the usefulness
of entorhinal cortex texture in AD assessment. Then, through a
follow-up period of 18 months, we did a comparison between
volume and texture measures to evaluate the hypothesis that

texture changes may precede the development of atrophy. Finally,
we evaluated if entorhinal cortex texture features can be used in
the prediction of conversion from MCI to AD.

MATERIALS AND METHODS

The Alzheimer’s Disease Neuroimaging
Initiative
Data were acquired from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI).1 The ADNI was launched in 2003 by the
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration,
private pharmaceutical companies, and non-profit organizations
as a public–private partnership. The goal of the ADNI study is to
determine biological biomarkers of AD through neuroimaging,
genetics, neuropsychological tests, and other measures in order
to develop new treatments and monitor their effectiveness, and
lessen the time of clinical trials.

Subjects
All subjects selected for this study were from standardized data
collections (see http://adni.loni.usc.edu/methods/mri-analysis/
adni-standardized-data/) and specifically from the ADNI-1
Complete 2 and 3 year 1.5 Tesla datasets. All data acquired as
part of this study are publicly available.2 Enrolled subjects were all
between 55 and 90 years of age, and each subject was willing, able
to perform all test procedures described in the protocol, and had

1http://adni.loni.usc.edu/
2http://adni.loni.usc.edu/data-samples/

TABLE 1 | Selected quantitative magnetic resonance imaging (MRI) studies where entorhinal cortex was used for the classification of AD and the prediction of
conversion from MCI to AD.

Author Data type Classification ROI Acc. Se. Sp. Description

Classification studies

Juottonen et al. (1999) Volume NC vs. AD Hip.
Erc.

86%
87%

80%
80%

91%
94%

Both hippocampus and entorhinal cortex had the same
discriminative power.

Pennanen et al. (2004) Volume NC vs. MCI Hip.
Erc.

60%
66%

57%
65%

62%
70%

Between NC and MCI subjects entorhinal cortex
atrophy was more pronounced and provided better
classification.

Ryu et al. (2017) Volume SMI vs. NC Hip
Erc.

NA 67%
78%

85%
93%

Subjects with SMI had lower Erc. volumes than NC,
whereas no differences in Hip volume were seen

Prediction of conversion from MCI to AD

Killiany et al. (2002) Volume 0 vs. 36 months Hip.
Erc.

NA
84%

NA NA Entorhinal cortex differentiated MCI subjects that
developed AD, whereas hippocampus did not

deToledo-Morrell et al. (2004) Volume 0 vs. 36 months Hip.
Erc.

NA
93%

NA NA Entorhinal cortex provided better predictive accuracy
from hippocampus

Devanand et al. (2007) Volume 0 vs. 36 months Hip.
Erc.

79%
80%

61%
63%

NA Entorhinal cortex had more atrophy rates than
hippocampus for MCIc

Bakkour et al. (2009) Thickness 0 vs. 36 months Cortex NA 83% 65% Entorhinal cortex volume may be a better predictor in
people with MCI rather than hippocampal volume

Eskildsen et al. (2013) Thickness 0 vs. 36 months Cortex 67%–
76%

NA NA Longitudinal measures in MCI subjects showed that
entorhinal cortex was affected first, followed by
hippocampus

SMI, subjective memory impairment; NC, normal controls; MCI, mild cognitive impairment; MCIc, mild cognitive impairment converter; AD, Alzheimer’s disease; ROI,
region of interest; Acc., accuracy; Se, sensitivity; Sp, specificity.
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a study partner who is able to provide an independent evaluation
of functioning. Overall, 455 subjects were included in the study:
153 NC (73 males and 80 females), 141 MCI (95 males and 46
females), 77 MCI subjects that converted to AD (MCIc; 43 males
and 34 females), and 84 AD (40 males and 44 females).

Cognitive Measures
All subjects underwent through clinical and cognitive assessment
at the time of baseline scan to determine their diagnosis.
Inclusion criteria for NC were MMSE scores between 24 and
30; CDR of zero; absence of depression, MCI, and dementia.
Inclusion criteria for MCI were MMSE scores between 24 and
30; CDR of 0.5; objective memory loss, measured by education
adjusted scores on Wechsler Memory Scale Logical Memory II
(Elwood, 1991), absence of significant levels of impairment in
other cognitive domains, and absence of dementia. Inclusion
criteria for AD were MMSE scores between 20 and 26; CDR of
0.5 or 1.0; National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS/ADRDA) criteria for probable
AD (McKhann et al., 1984; Dubois et al., 2007). Definitive
autopsy-based diagnosis of AD was not possible, and detailed
description of inclusion/exclusion criteria can be found in the
ADNI protocol.3

MRI Data
All the subjects had a standardized protocol on 1.5-T MRI
units from Siemens Medical Solutions and General Electric
Healthcare. MR protocols included high-resolution (typically
1.25 × 1.25 × 1.25 mm3 voxels) T1-weighted volumetric 3D
sagittal magnetization prepared rapid gradient-echo (MPRAGE)
scans. MRI data acquisition techniques were standardized across
different sites according to the ADNI protocol.4

Segmentation Algorithm and Volumetry
ROI segmentation was performed using the Freesurfer image
analysis suite (Massachusetts General Hospital, Boston, MA,
United States), which is documented and freely available for
download online.5 The Freesurfer pipeline conforms the MRI
scans to an isotropic voxel size of 1 mm3, and the MRI intensity
was normalized using the automated N3 algorithm (Sled et al.,
1998) followed by skull stripping and neck removal. Details
of these have been discussed in previous publications (Fischl
et al., 2002, 2004). In brief, this multistep pipeline includes
motion correction, automated Talairach transformation,
first normalization of voxel intensities, removal of the skull,
linear volumetric registration, intensity normalization,
non-linear volumetric registration, volumetric labeling,
second normalization of voxel intensities, and white matter
segmentation. Output includes segmentation of subcortical
structures, extraction of cortical surfaces, cortical thickness
estimation, spatial normalization onto the FreeSurfer surface
template (FsAverage), and parcellation of cortical regions.

3http://adni.loni.usc.edu/methods/documents/
4http://adni.loni.usc.edu/methods/documents/mri-protocols/
5http://surfer.nmr.mgh.harvard.edu/

Hippocampal and entorhinal cortex volumes were computed
using Freesurfer segmentations given that this is an established
method. Cy-Tera supercomputer of the Cyprus Institute was
used to run FreeSurfer.

Texture Analysis
Texture features were calculated using KNIME Analytics
platform (Berthold et al., 2008). The following Haralick texture
features (Haralick et al., 1973) were computed: angular second
moment (ASM), contrast, correlation, variance, sum average,
sum variance, entropy, and cluster shade, and their average in
four directions (0◦, 45◦, 90◦, 135◦) was used.

Statistical Analysis
Demographic data along with cognitive tests, texture and volume
features of subjects at baseline scans were compared with
one-way ANOVA to determine statistical differences between
the groups (NC, MCI, MCIc, AD). Then, post-hoc tests using
the Bonferroni correction were applied to determine if there
were significant differences in texture features between the
groups. There were no outliers in the data, as assessed by
inspection of a boxplot.

Texture features and volume were combined as predictor
variables in a logistic regression model in order to investigate
the potential of combined value of the two MRI biomarkers.
Backward elimination methods were used to select the most
suitable variables. Apart from texture and volume, we included
age and gender as covariates. Through receiving operating
characteristic (ROC) curves, we determined the performance of
the various variables, and their ability to discriminate NC from
MCI and AD subjects, as well as to classify the conversion status.
The resulting area under the curve (AUC) was used to determine
the capability for diagnosis. The significance of an AUC was
determined using DeLong, Delong, and Clarke–Pearson’s test
(DeLong et al., 1988).

Then, through a repeated measures ANOVA, we compared
entorhinal cortex and hippocampal volume changes with texture
changes within 18 months and evaluated if there were significant
texture changes during follow-up period. Data were checked for
outliers and normal distribution, as assessed by boxplot and
Shapiro–Wilk test (p > 0.05). When sphericity was violated, as
assessed by Mauchly’s test, the Greenhouse–Geisser correction
was applied. Then, post-hoc tests using the Bonferroni correction
was used to compare the volume and texture changes.

To evaluate the prognostic power of our model, we also used
AUC curves on MCI and MCIc subjects. Specifically, the MCI
group was randomly divided into both a training set (∼70% of
the participants) and a trial set (∼30%) of the participants. This
was iterated five times to provide five unique training and test
groups. The training sets were used to fit two binary logistic
regression models: the first model included entorhinal cortex
volume, MMSE scores, age, and gender as covariates, and the
second model had the same features, plus entorhinal cortex
texture to determine if the addition of texture-based metrics
could improve the accuracy. For a more robust prediction model,
the colinearity between the predictor variables was evaluated, and
only those for which the colinearity was acceptable were included
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in the final model. The estimated logistic regression model was
then applied to the validation cohorts.

Statistical analysis was performed with IBM SPSS Statistics
Version 24 (IBM Corp. Released 2011; IBM SPSS Statistics for
Windows, Version 20.0. Armonk, NY: IBM Corp.) or MedCal
Version 19 (MedCalc Software bvba, Ostend, Belgium).6 The
significance level of all statistical tests was set at P < 0.05.

RESULTS

Baseline demographics including gender, age, and MMSE scores
are shown in Table 2. All baseline variables (except the age) were
significantly different between the four groups based on one-
way ANOVA. Estimations of hippocampal and entorhinal cortex
volumes are in cubic millimeter (left and right averaged). As
expected, AD patients had smaller volumes than MCI subjects,
and both had smaller volumes than NC subjects.

Between-Group Differences
A one-way ANOVA was conducted to determine if there were
significant texture features between the groups for baseline scans
(Table 3). For NC vs. AD and NC vs. MCI groups, entorhinal
cortex revealed statistically significant differences in more
features compared to hippocampus. Specifically, hippocampus
did not show any significant changes for NC vs. MCI group, apart
for volume. However, hippocampal texture revealed statistical
significant differences in more features between MCI vs. MCIc
group. Between MCI vs. AD, both structures had similar results
with entorhinal cortex showing statistically significant differences
in the texture feature contrast, correlation, sum variance, and
entropy, whereas hippocampus for the texture feature ASM, sum
average, and entropy.

Texture Differences Between Groups –
Classification
To determine the classification between the groups, a binary
logistic regression model was calculated for each individual
variable, and using ROC curves, we determined their AUC. The
combination model included raw single MRI variable scores as

6https://www.medcalc.org; 2019

well as age and gender as covariates. In most of the cases, all
eight texture features revealed significant differences between
groups (see Tables 4–6). Then, all the variables were combined
together, and the backward elimination method selected the more
important predictor variables.

For NC vs. AD group, the AUC for entorhinal cortex texture
values ranged from 0.540 to 0.824 (Table 4). When texture
features were combined into a single classification model, the
AUC reached 0.872, which was similar to hippocampal volume
(AUC 0.869) and entorhinal cortex volume (AUC 0.888). When
entorhinal cortex texture and volume were combined, the
AUC reached 0.914.

Between NC and MCI subjects, features combination showed
a lower AUC (0.710) compared to entorhinal and hippocampal
volume (Table 5). The entorhinal cortex texture and volume
combination raised the AUC to 0.740.

Between MCI and MCIc subjects, features combination
provided a higher AUC (0.730), compared to entorhinal cortex
and hippocampal volume (Table 6). The entorhinal cortex texture
and volume combination raised the AUC to 0.756.

Between MCI and AD subjects, features combination showed
a higher AUC of 0.764 compared to entorhinal cortex and
hippocampal volume (Table 7). The entorhinal cortex texture and
volume combination raised the AUC to 0.780.

Measures Between Different MRI Scan
Intervals
A one-way repeated measures ANOVA was conducted to
determine whether there were statistically significant differences
in entorhinal cortex (texture and volume) over the 18-
month observation (baseline, 6, 12, and 18 months). For
comparison, hippocampal volume was also included in this
analysis. At each time point, a diagnosis was made based
on the NINCDS-ADRDA Alzheimer’s Criteria to identify
conversion of MCI to probable AD and vice versa, and only
MCI and MCIc subjects were included in this part of the
analysis. Specifically, longitudinal data of 141 MCI and 77
MCIc subjects were included in this analysis. The means and
standard deviations for volume are presented in Table 8 and
for texture in Table 9. We reported the F-statistic from the
repeated measures ANOVA test as F(dftime, dferror) = F-value,
P = P-value.

TABLE 2 | Baseline demographics and hippocampal and entorhinal cortex volume.

Variables at baseline (mean ± SD) Diagnosis group P-value

NC (n = 194) MCI (n = 200) MCI_c (n = 84) AD (n = 130)

Sex (M/F) 96/98 127/73 49/35 60/70 0.003

Age 76.17 (5.20) 74.74 (7.18) 74.88 (7.30) 76.01 (7.35) 0.111

MMSE score 29 (1.0) 27 (1.82) 26 (1.84) 23 (2.16) <0.001

CDR 0.0 (0.00) 0.50 (0.04) 0.50 (0.00) 0.75 (0.25) <0.001

Entorhinal cortex volume (mm3) 1,930 (284) 17,191,723 (384) 154,410 (338) 1,417 (348) <0.001

Hippocampal volume (mm3) 3,539 (413) 3,243 (461) 2,941 (461) 2,892 (474) <0.001

NC, normal controls; MCI, mild cognitive impairment; MCIc, mild cognitive impairment converter; AD, Alzheimer’s disease; MMSE, mini-mental status examination; CDR,
clinical dementia rating; SD, standard deviation.
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TABLE 3 | Mean differences at baseline scans for entorhinal cortex and hippocampus.

Mean difference (SE)

Entorhinal cortex Hippocampus

Group NC vs. AD NC vs. MCI MCI vs. MCIc MCI vs. AD NC vs. AD NC vs. MCI MCI vs. MCIc MCI vs. AD

Texture features

ASM −0.017* (0.005) −0.01 (0.004) −0.007 (0.006) −0.006 (0.005) −0.013* (0.004) −0.008 (0.004) −0.023* (0.005) −0.023* (0.005)

Contrast −024.3* (2.60) −7.73* (2.27) −7.36 (2.93) −16.60* (2.60) −2.0 (2.36) −3.61 (2.11) −4.62 (2.70) −5.60 (2.32)

Correlation −0.051* (0.005) −0.017* (0.004) −0.013 (0.005) −0.034* (0.005) −0.0004 (0.005) −0.0004 (0.005) −0.016 (0.007) −0.001 (0.005)

Variance −0.201 (1.14) −1.11 (1.01) −0.780 (1.30) −0.910 (1.14) −2.40 (2.80) −4.90 (2.46) −13.0* (2.20) −7.30 (2.77)

Sum average −1.44* (0.365) −0.590 (0.324) −0.821 (0.414) −0.853 (0.361) −1.64* (0.560) −0.823 (0.498) 2.40* (0.640) −2.47* (0.556)

Sum variance −27.70* (4.15) −12.28* (3.68) −2.18 (4.80) −15.41* (4.14) −6.30 (10.0) −15.20 (8.80) −41.0* (11.3) −21.5 (9.80)

Entropy −0.137* (0.023) −0.058* (0.020) −0.060 (0.026) −0.080* (0.023) −0.103* (0.028) −0.034 (0.024) −0.113* (0.030) −0.138* (0.026)

Cluster shade −471 (350) −260 (312) −118* (414) −730 (342) −1, 009 (1, 038) −2, 373 (927) −4, 600* (1182) −3, 383 (1, 026)

Volumetric features

Volume −513* (39.1) −211* (34.8) −174* (45.0) −301* (38.7) −646* (52.4) −295* (42.7) −302* (60.0) −351* (51)

SE, standard error; ASM, angular second moment; NC, normal controls; MCI, mild cognitive impairment; MCIc, mild cognitive impairment converter; AD, Alzheimer’s
disease. *The mean difference is significant at the 0.05 level.

For entorhinal cortex volume in both MCI and MCIc subjects,
there was a significant effect for time [F(2.837, 383.0) = 45.62,
P < 0.0005] and [F(3, 186) = 45.06, P < 0.0005], respectively.
Furthermore, the mean difference was statistically significant at
the 0.05 level between all-time points for both MCI and MCIc
subjects with the exception of 12–18 time points for MCIc
subjects. Post-hoc tests using the Bonferroni correction showed
that entorhinal cortex volume in the MCI subjects was reduced by

TABLE 4 | Entorhinal cortex texture and volume in classifying NC vs. AD.

NC vs. AD ROC analysis
AUC

95% CI P-value

Entorhinal cortex

Texture features

ASM 0.592 0.529–0.656 0.005

Contrast 0.794 0.743–0.845 <0.001

Correlation 0.824 0.776–0.872 <0.001

Variance 0.524 0.458–0.590 0.475

Sum average 0.620 0.555–0.681 <0.001

Sum variance 0.713 0.653–0.770 <0.001

Entropy 0.685 0.625–0.744 <0.001

Cluster shade 0.540 0.475–0.604 0.238

Volume and thickness

Erc. volume 0.888 0.847–0.925 <0.001

Erc. thickness 0.809 0.755–0.863 <0.001

Features combination

Texture (ASM, correlation, variance,
sum average, and cluster shade)

0.872 0.828–0.916 <0.001

Texture + Erc. volume 0.914 0.879–0.950 <0.001

Hippocampus

Hippocampal volume 0.869 0.827–0.912 <0.001

NC, Normal Controls; AD, Alzheimer’s disease; ROC, receiver operating
characteristic; AUC, area under curve, CI, confidence interval; ASM, angular
second moment; Erc, entorhinal cortex.

an average of 20± 6.9 mm3 6 months after the baseline scan, then
by an additional 19 ± 6.0 mm3 between 6 and 12 months’ time
and 36± 6.1 mm3 between 12 and 18 months’ time. As expected,
the entorhinal cortex degeneration was more pronounced in the
MCIc subjects. Their entorhinal cortex volume was reduced by an
average of 55 ± 10.5 mm3 6 months after the baseline scan, then
by an additional 25 ± 9.5 mm3 between 6 and 12 months’ time
and 40± 10.3 mm3 between 12 and 18 months’ time.

TABLE 5 | Entorhinal cortex texture and volume in classifying NC vs. MCI.

NC vs. MCI ROC analysis
AUC

95% CI P-value

Entorhinal cortex

Texture features

ASM 0.618 0.563–0.674 <0.001

Contrast 0.664 0.611–0.718 <0.001

Correlation 0.671 0.617–0.725 <0.001

Variance 0.604 0.548–0.660 <0.001

Sum average 0.618 0.562–0.674 <0.001

Sum Variance 0.641 0.586–0.695 <0.001

Entropy 0.632 0.577–0.687 <0.001

Cluster shade 0.608 0.551–0.666 <0.001

Volumetric and thickness

Erc. volume 0.735 0.686–0.784 <0.001

Erc. thickness 0.659 0.604–0.713 <0.001

Features combination

Texture (ASM, correlation, variance,
sum average, and cluster shade)

0.710 0.656–0.762 <0.001

Texture and Erc. volume 0.740 0.689–0.791 <0.001

Hippocampus

Hippocampal volume 0.762 0.715–0.809 <0.001

NC, normal controls; MCI, mild cognitive impairment; ROC, receiver operating
characteristic; AUC, area under curve, CI, confidence interval; ASM, angular
second moment; Erc, entorhinal cortex.
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TABLE 6 | Entorhinal cortex texture and volume in classifying MCI vs. MCIc.

MCI vs. MCIc ROC analysis
AUC

95% CI P-value

Entorhinal cortex

Texture features

ASM 0.565 0.494–0.637 0.85

Contrast 0.583 0.510–0.657 0.028

Correlation 0.580 0.505–0.654 0.038

Variance 0.531 0.458–0.604 0.037

Sum average 0.591 0.520–0.662 0.036

Sum variance 0.527 0.451–0.603 0.475

Entropy 0.593 0.522–0.662 0.014

Cluster shade 0.696 0.632–0.759 0.032

Volume and thickness

Erc. volume 0.642 0.573–0.711 <0.001

Erc. thickness 0.670 0.603–0.737 <0.001

Features combination

Texture (ASM, correlation, variance,
sum average, and cluster shade)

0.730 0.665–0.795 <0.001

Texture and Erc. volume 0.756 0.692–0.820 <0.001

Hippocampus

Hippocampal volume 0.685 0.617–0.753 <0.001

MCIc, mild cognitive impairment converter; ROC, receiver operating characteristic; AUC, area under curve, CI, confidence interval; ASM, angular second moment; Erc,
entorhinal cortex.

For hippocampal volume in both MCI and MCIc subjects,
there was significant effect for time [F(2.748, 376.4) = 41.8,
P < 0.0005] and [F(3, 195) = 21.74, P < 0.0005] respectively.
Furthermore, the mean difference was statistically significant at
the 0.05 level between all-time points for both MCI and MCIc
subjects with the exception of 12–18 time points for MCIc
subjects. Interestingly, hippocampal volume reduction in the
MCIc subjects was similar to MCI stable subjects. Specifically,
post-hoc tests using the Bonferroni correction revealed that
hippocampal volume in the MCI subjects was reduced by an
average of 49 ± 12.6 mm3 6 months after the baseline scan, then
by an additional 45 ± 11.5 mm3 between 6 and 12 months’ time
and 38 ± 11.3 mm3 between 12 and 18 months’ time. A similar
pattern was seen in MCIc subjects as well as hippocampal volume
reduction was 45 ± 15.8 mm3 after 6 months from the baseline
scan, and then reduced by an additional 40± 14.0 mm3 between
6 and 12 months’ time and an additional 38± 16.6 mm3 between
12 and 18 months’ time.

Remarkably, repeated measures ANOVA in the entorhinal
cortex texture features of MCIc subjects revealed that there was
significant effect for time for all features (except for cluster shade),
whereas in stable MCI subjects, there was significant effect for
time only for sum variance and entropy.

Prediction of Conversion to AD Within 18
Months
To evaluate entorhinal cortex texture in the prediction of
conversion from MCI to AD, all the MCI subjects were divided
into two categories: the MCI subjects who remained stable and
did not convert to AD within 18 months (n = 200) vs. the
MCIc subjects who converted to AD within 18 months (n = 84).

TABLE 7 | Entorhinal cortex texture and volume in classifying MCI vs. AD.

MCI vs. AD ROC analysis
AUC

95% CI P-value

Entorhinal cortex

Texture features

ASM 0.627 0.565–0.690 <0.001

Contrast 0.704 0.646–0.763 <0.001

Correlation 0.725 0.668–0.783 <0.001

Variance 0.624 0.560–0.688 <0.001

Sum average 0.649 0.587–0.711 <0.001

Sum variance 0.658 0.596–0.720 <0.001

Entropy 0.656 0.594–0.718 <0.001

Cluster shade 0.645 0.583–0.706 <0.001

Volume and thickness

Erc. volume 0.726 0.670–0.781 <0.001

Erc. thickness 0.702 0.642–0.762 <0.001

Features combination

Texture (ASM, correlation, variance,
sum average, and cluster shade)

0.764 0.710–0.818 <0.001

Texture + Erc. volume 0.780 0.728–0.833 <0.001

Hippocampus

Hippocampal volume 0.711 0.652–0.771 <0.001

MCI, mild cognitive impairment; AD, Alzheimer’s disease; ROC, receiver operating
characteristic; AUC, area under curve, CI, confidence interval; ASM, angular
second moment; Erc, entorhinal cortex.

First, we run a prediction model, which included entorhinal
cortex volume, MMSE scores, and gender with age as covariates.
Then, a second model was run where entorhinal cortex texture
features (contrast and cluster shade) were included as well, to
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TABLE 8 | Statistically significant difference in entorhinal cortex and hippocampal volume over an 18-month intervention.

Within-subjects effects Entorhinal cortex volumeMean (SD) mm3 Hippocampal volumeMean (SD) mm3

MCI MCIc MCI MCIc

Baseline 1,733 (390) 1,504 (293) 3,263 (483) 2,906 (439)

6 months 1,712 (389) 1,449 (278) 3,213 (487) 2,860 (423)

12 months 1,693 (393) 1,424 (269) 3,168 (496) 2,819 (432)

18 months 1,657 (411) 1,384 (269) 3,129 (487) 2,781 (436)

F-ratio (Time) F (2.837, 383) = 45.62, P < 0.0005 F (3, 186) = 45.06, P < 0.0005 F (2.748, 376) = 41.8, P < 0.0005 F (3, 195) = 21.74, P < 0.0005

MCI, mild cognitive impairment; MCIc, mild cognitive impairment converters; SD, standard deviation.

evaluate if texture metrics could improve accuracy. The selected
variables were also evaluated for colinearity between them, and
their degree of correlation was acceptable.

Then, the MCI group was divided into a training set (∼70)
and a trial set (∼30%). We randomly generated five of these sets,
with each training set having a total of n = 133 MCI and n = 55
MCIc, whereas the trial set had total of n = 67 MCI and n = 29
MCIc. Independent sample t-test and chi-square analysis showed
no statistical difference between the baseline demographics in
the training and trial sets in each iteration. For each of the two
models, five binary logistic regression models were determined,
corresponding to one for each training set (Table 10). The model
including texture performed better and achieved AUCs of 0.795,
0.725, 0.745, 0.786, and 0.750, respectively. Then, the logistic
regression coefficients from the final model developed from the
training cohorts were applied to the validation cohorts, and AUCs
of 0.780, 0.780, 0.790, 0.735, and 0.735 were seen.

DISCUSSION

The main objective of this study was to evaluate entorhinal cortex
texture as a new biomarker of AD from T1-weighted MR images.
To the best of our knowledge, this is the first study that used
texture analysis on the entorhinal cortex for the assessment of
AD. Thus, our results are not directly compared to the same
method and ROI previously used in other AD studies, but mainly
to hippocampal volume, which represents the most frequently
used method in the assessment of AD. In the analysis, apart from
entorhinal cortex texture features, we calculated also its volume,
and we combined them in a binary logistic regression model,
which included age and gender as covariates.

For entorhinal cortex, one way-ANOVA showed that contrast,
correlation, and volume were the features that showed statistical
significant differences between all groups and, for hippocampus,
sum average, cluster shade, and volume (see Table 3). For
the NC vs. MCI group, one-way ANOVA showed that were
statistically significant differences in more features for the
entorhinal cortex compared to the hippocampus, whereas the
hippocampus showed significant differences in more features
between MCI vs. MCIc group. Perhaps, these differences
are correlated with the fact that entorhinal cortex is the
region affected first by the disease (Gómez-Isla et al., 1997;
Juottonen et al., 1999; Galton et al., 2001; Killiany et al.,
2002; Busatto et al., 2003; deToledo-Morrell et al., 2004;

Tapiola et al., 2008), whereas the hippocampus is involved
in a later stage.

In the literature, the entorhinal cortex and hippocampus
have shown a significant role in the assessment of AD
(Leandrou et al., 2018). Similarly, in the present study, results
of the ROC curve analysis showed that for the entorhinal
cortex, there were significant differences between NC subjects
and AD patients. Specifically, there were significant texture
changes in six texture features (apart from variance and cluster
shade), and their combination provided an AUC of 0.872
(P < 0.001) for the discrimination between NC and AD
subjects (Table 4). This was similar to entorhinal cortex or
hippocampal volume, which showed AUC of 0.888 (P < 0.001)
and 0.869 (P < 0.001), respectively. When entorhinal cortex
texture features and volume were combined into the same model,
the diagnostic result was improved, showing an AUC of 0.914
(P < 0.001).

Compared to a study that used hippocampal texture such as
from Zhang et al. (2012), their classification accuracy reached
96.4%. However, their dataset included severely affected AD
subjects (MMSE 5.53 ± 4.47 compared to 23 ± 1.9 for the
ADNI data in the present study). Compared to the study of
Sørensen et al. (2015), which also used the ADNI dataset, their
hippocampal texture achieved an AUC of 0.912 in discriminating
NC from AD. On the other hand, the study of Luk et al. (2018)
used texture features on the whole brain, and the combination
of hippocampal texture features and volume provides an AUC of
0.924, which was close to our combined model.

Compared to other ADNI volumetric studies where
hippocampus was used, NC subjects were classified from
AD patients with AUC levels of 0.750–0.887 (Mueller et al.,
2010) and 0.810–0.895 when hippocampal subfields only were
used (Khan et al., 2015). This is comparable to our hippocampal
volume results (AUC 0.869), which is close to entorhinal cortex
texture (AUC 0.888). In other studies (Juottonen et al., 1999;
Colliot et al., 2008), where both hippocampal and entorhinal
cortex volume were used, the classification accuracy ranged
between 84 and 86%. In the study of Pennanen et al. (2004),
the combination of hippocampal and entorhinal cortex volume
provided an accuracy of 91%.

Between NC vs. MCI subjects, the combination of entorhinal
cortex texture features in the logistic regression model provided
an AUC of 0.710 and their combination with entorhinal cortex
volume raised the AUC to 0.740 (Table 5). This is comparable
to the AUC (0.764) in the study of Sørensen et al. (2015)
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where hippocampal texture was used. In the study of
Hwang et al. (2016) where voxel-based 3DT1W was used
on the whole brain, their AUC ranged between 0.682 and
0.713, which was close to our single ROI method. The study
by Simoes et al. (2012) used whole brain texture maps reaching
a classification accuracy of 87% (Se. 85%, Sp. 95%); however,
their analysis was based on 3-Tesla (T) images. Compared to
other studies (Pennanen et al., 2004; Colliot et al., 2008) that
used hippocampal volume for the discrimination between NC vs.
MCI, a classification accuracy close to 66% was achieved.

Between MCI and MCIc subjects, the combination of
entorhinal cortex texture features and volume provided an AUC
of 0.756, whereas entorhinal cortex or hippocampal volume
provided lower AUCs of 0.642 and 0.685, respectively. Our result
for this group was similar to the study of Chincarini et al. (2011)
where texture features were extracted from defined volumes
of interest, mainly from the MTL, and through random forest
classifiers, they achieved an AUC of 0.740. These findings suggest
that the entorhinal cortex texture changes precede neuronal
atrophy of the hippocampus, which is consistent with the most
widely used staging scheme proposed by Braak and Braak (1991).
Specifically, Stage I is associated with NFT deposition in the
entorhinal–perirhinal cortex, and in Stage II, the NFTs become
more prominent, and the entorhinal cortex is eventually involved.
In Stage III, the entorhinal cortex is fully involved, whereas
between Stages III and IV, NFTs appear in the hippocampus.
Eventually, in Stages V–VI, apart from the MTL, NFTs are also
widely distributed in the isocortex.

Between MCI and AD subjects, the combination of entorhinal
cortex features showed better diagnostic capability (AUC of
0.764) compared to entorhinal cortex and hippocampal volume
(AUCs of 0.726 and 0.711, respectively). The combination of
entorhinal cortex texture and volume raised the AUC to 0.780
(Table 7). For this group, other studies (Pennanen et al.,
2004; Colliot et al., 2008; Ferrarini et al., 2009) achieved a
classification accuracy between 80 and 82% using volumetric or
shape characteristics of the hippocampus and entorhinal cortex.

In the one-way repeated measures ANOVA, the entorhinal
cortex volume reduction was more pronounced in the MCIc
subjects, whereas hippocampal volume atrophy rate was similar
in both MCI and MCI subjects. Similar finding was seen in
the study of Devanand et al. (2007) where it was shown that
entorhinal cortex had more severe atrophy rates, compared to
hippocampus, in MCIc subjects. Regarding entorhinal cortex
texture features (Table 9), the one-way repeated measures
ANOVA showed significant effect for time (for all texture
features) in MCIc subjects, whereas in MCI stable subjects, there
was no statistically significant difference (apart from entropy).
Perhaps, this finding indicates that through entorhinal cortex
texture features, we could identify that MCI subjects in the future
could develop the disease.

Furthermore, we determined whether entorhinal cortex
texture could be used to predict conversion of MCI to AD
within 18 months. For the discrimination of stable MCI from
MCIc subjects, our prediction model including entorhinal cortex
features, volume, MMSE scores, age, and gender performed better
rather than volume alone and demonstrated an average AUC of
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TABLE 10 | Area under curve in five trials of randomly splitting training (70%) and trial data (30%).

Entorhinal cortex volume Entorhinal cortex volume and texture

Trial Training cohort Validation cohort Training cohort Validation cohort

ROC
analysis

AUC

(95% CI) P-value ROC
analysis

AUC

(95% CI) P-value ROC
analysis

AUC

(95% CI) P-value ROC
analysis

AUC

(95% CI) P-value

1 0.760 0.690–0.830 0.000 0.700 0.583–0.814 0.000 0.795 0.728–0.862 0.000 0.780 0.662–0.898 0.000
2 0.673 0.595–0.751 0.001 0.688 0.573–0.804 0.005 0.725 0.649–0.801 0.000 0.780 0.674–0.886 0.001
3 0.663 0.580–0.746 0.04 0.658 0.538–0.778 0.005 0.745 0.770–0.820 0.000 0.790 0.680–0.903 0.001
4 0.662 0.582–0.742 0.000 0.635 0.500–0.772 0.005 0.786 0.712–0.860 0.000 0.735 0.621–0.848 0.001
5 0.647 0.565–0.730 0.001 0.709 0.591–0.827 0.003 0.751 0.675–0.827 0.000 0.735 0.627–0.843 0.001

ROC, receiver operating characteristic; AUC, area under curve, CI, confidence interval.

0.760 in the training cohort and an AUC of 0.764 in the validation
cohort. In this study, the combination of texture and volume
features improved the prediction of conversion from MCI to
AD, and this was also the finding as well by two recent studies
by Gao et al. (2018) and Luk et al. (2018). Compared to other
studies that followed their subjects for the same time period,
such as from Chupin et al. (2009) and Cuingnet et al. (2011),
hippocampal volume was used, and the classification accuracy
between MCI and MCIc was 67 and 64%, respectively. Sørensen
et al. (2015), compared hippocampal volumetry and texture in the
differentiation between stable MCIs and MCI converters within
24 months, and AUCs of 0.670 and 0.740, respectively, were
achieved. In the study from Misra et al. (2009) where a VBM
method on the whole brain was used to consider the conversion
within 12 months, an accuracy of 81.5% was obtained. In a recent
study by Lee et al. (2020) texture analysis was also used for the
prediction of the disease in subjects from the ADNI database.
In their analysis texture of the hippocampus, precuneus and
posterior cingulate cortex were included, and their model ranged
between AUCs of 0.79–0.82, whereas our one structure only
analysis ranged between 0.735 and 0.790.

There are some limitations in the present study. First, the
ADNI cohort cannot be generalized to the normal population
given that the patient recruitment was targeted toward clinical
trials in patients with AD. The baseline demographics of these
sample patients do not fit with the actual demographics of
the broader population. For example, female/male ratio is poor
with almost twice as many males as females especially for
MCI subjects. Furthermore, ADNI study does not provide
post-mortem pathological confirmation of the clinical status.
Therefore, the stable MCI subjects we selected for the present
study although did not progress to AD within the followed-up
period, they might have developed the disease or other types of
dementia in a later stage. Therefore, as in any AD study involving
in vivo data, the diagnosis of the disease remains probable. Thus,
MRI patterns of neurodegeneration found in studies like the
present may have uncertainties.

To our knowledge, this is the first study that runs texture
analysis on the entorhinal cortex for the assessment of AD to
identify texture changes in the classification of MCI and AD
subjects. Furthermore, it evaluated if entorhinal cortex texture
can be used in the prediction of the disease development, and

according to our results, in many cases, entorhinal cortex texture
changes provided better results compared to the hippocampal
atrophy, which remains the most frequent method in the
assessment of AD. This suggests that the deposition of NFTs in
the area of entorhinal cortex may precede the development of
atrophy in the hippocampus.
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